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A graph theoretic approach to neurodegeneration: five 
data-driven neuropsychological subtypes in mild cognitive 
impairment
Jessica Pommy a, L. Conanta, A. M. Buttsa, A. Nenckab, Y. Wang b, M. Franczaka 

and L. Glass-Umfleeta

aDepartment of Neurology, Medical College of Wisconsin, Milwaukee, United States; bDepartment of 
Radiology, Medical College of Wisconsin, Milwaukee, United States

ABSTRACT
Mild cognitive Impairment (MCI) is notoriously heterogenous in 
terms of clinical presentation, neuroimaging correlates, and subse-
quent progression. Predicting who will progress to dementia, which 
type of dementia, and over what timeframe is challenging. Previous 
work has attempted to identify MCI subtypes using neuropsycho-
logical measures in an effort to address this challenge; however, 
there is no consensus on approach, which may account for some of 
the variability. Using a hierarchical community detection approach, 
we examined cognitive subtypes within an MCI sample (from the 
Alzheimer’s Disease Neuroimaging Initiative [ADNI] study). We then 
examined whether these subtypes were related to biomarkers (e.g., 
cortical volumes, fluorodeoxyglucose (FDG)-positron emission 
tomography (PET) hypometabolism) or clinical progression. We 
identified five communities (i.e., cognitive subtypes) within the 
MCI sample: 1) predominantly memory impairment, 2) predomi-
nantly language impairment, 3) cognitively normal, 4) multidomain, 
with notable executive dysfunction, 5) multidomain, with notable 
processing speed impairment. Community membership was signif-
icantly associated with 1) cortical volume in the hippocampus, 
entorhinal cortex, and fusiform cortex; 2) FDG PET hypometabolism 
in the posterior cingulate, angular gyrus, and inferior/middle tem-
poral gyrus; and 3) conversion to dementia at follow up. Overall, 
community detection as an approach appears a viable method for 
identifying unique cognitive subtypes in a neurodegenerative sam-
ple that were linked to several meaningful biomarkers and mod-
estly with progression at one year follow up.
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Introduction

Mild Cognitive Impairment (MCI) represents an intermediate stage between normal aging 
and dementia, characterized by an objective decline in cognition, despite intact 
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functioning in daily life (Petersen & Morris, 2005; Petersen, 2016; Petersen et al., 2014). 
Heterogeneity in the present clinical symptoms (Nordlund et al., 2005; Panza et al., 2007), 
underlying pathology (Ezzati et al., 2020; Nettiksimmons et al., 2014) and clinical course 
(Ellendt et al., 2017; Hu et al., 2017; Thomas et al., 2019) has made it difficult to assess the 
effectiveness of possible interventions (Blanken et al., 2020; Christa Maree Stephan et al.,  
2013; Visser et al., 2005) and may make it harder to identify novel targets for treatment. 
A better understanding of the heterogeneity in MCI would be helpful, not only for clinical 
care (such as being able to provide an accurate estimate of progression, improved 
management of the condition), but could potentially result in the identification of MCI 
cognitive phenotypes which could be impactful for treatment research (e.g., identification 
of treatment targets, enhanced evaluation of treatment effectiveness), and ultimately 
help inform the field’s understanding of the underlying processes driving the disease.

The variability in both the pattern and degree of impairment across neuropsychologi-
cal measures has been used to clarify aspects of MCI heterogeneity (Bondi et al., 2014; Kim 
et al., 2019; Nation et al., 2019). Frequently, these efforts have placed an emphasis on 
a specific cognitive weakness (e.g., presence or absence of memory impairment) or the 
additive impact of impairments across multiple domains. Impaired verbal memory, for 
instance, has been linked to underlying pathology, namely, Alzheimer’s Disease (AD) 
related biomarkers (Eliassen et al., 2017; Michaud et al., 2017) and the subsequent 
development of Alzheimer’s Disease (Jak, Bangen, et al., 2009; Oltra-Cucarella et al.,  
2018; Petersen, 2004). Alternatively, single domain non-memory profiles have been linked 
to higher rates of reversion to normal (Ellendt et al., 2017; Overton et al., 2019). When the 
number of cognitive domains is examined, results have suggested dementia risk is greater 
when multiple cognitive domains are impaired (Bermejo-Pareja et al., 2016; Ganguli et al.,  
2011), with the greatest risk for multidomain amnestic profiles (Gothlin et al., 2017) 
(though results are not always consistent (Glynn et al., 2021)). Out of this work, four 
clinical subtypes have been identified based on: 1) presence or absence of memory 
impairment (amnestic or non-amnestic), and 2) impairment in one or multiple cognitive 
domains (single or multidomain) (Bondi et al., 2014; Petersen & Morris, 2005). While this 
approach continues to influence clinical and research efforts, these subtypes have largely 
focused on severity and extent of impairment, are complicated by mixed etiologies, and 
there has been concern this approach may lack specificity (Tatsuoka et al., 2013).

Data-driven cognitive approaches have been explored as a way to more precisely 
characterize heterogeneity in MCI (Blanken et al., 2020; Bondi et al., 2014; Eppig et al.,  
2017; Giraldo et al., 2021; Jak, Bondi, et al., 2009; Machulda et al., 2019; Oltra-Cucarella 
et al., 2018; Tatsuoka et al., 2013). Across different study cohorts, typically, three (Delano- 
Wood et al., 2009; Edmonds et al., 2019, 2021; Eppig et al., 2017) to four MCI subtypes are 
identified (Blanken et al., 2020; Bondi et al., 2014; Clark et al., 2013; Edmonds et al., 2021; 
Jak et al., 2016; Jak, Bondi, et al., 2009; Machulda et al., 2019) based on how one 
operationalizes MCI, the specific neuropsychological measures examined, and the use 
of normative samples (Clark et al., 2013; Jak, Bondi, et al., 2009). Generally, an amnestic 
MCI subtype (focal weakness in memory) (Bondi et al., 2014; Machulda et al., 2019), or 
memory and language (Clark et al., 2013; Delano-Wood et al., 2009)) a dysexecutive/mixed 
(Clark et al., 2013) or dysexecutive subtype (Machulda et al., 2019), and a cognitively 
normal subtype (Bondi et al., 2014; Clark et al., 2013) (sometimes characterized as a subtle 
cognitive complaints subtype (Machulda et al., 2019)) is identified. A distinct dysnomic 
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subtype (Bondi et al., 2014; Machulda et al., 2019) has also been reported, though some-
what less consistently. Efforts to link these data-driven cognitive subtypes with pathology 
(e.g., biomarkers of AD (Bondi et al., 2014; Machulda et al., 2020)) and clinical course have 
been explored (Ezzati et al., 2020; Guo et al., 2020; Lee et al., 2020) and are promising, 
though results are inconsistent and often are differentially related to demographic vari-
ables (Blanken et al., 2020; Bondi et al., 2014). Overall, despite various approaches to 
classify MCI subtypes, these efforts have not led to identification of additional novel MCI 
subtypes (Diaz-Mardomingo et al., 2017) and alternative approaches to subtyping MCI are 
of interest. Within the neurodevelopmental literature, community detection, a metric 
founded in graph theory has shown great promise for identifying alternative subtypes 
within neurodevelopmental and psychiatric diagnoses, and we hypothesize this approach 
may be useful for MCI. Generally, neuropsychological tests measure multiple interacting 
cognitive processes, rather than discrete unitary skills. The subtyping approaches 
described frequently rely on a limited set of neuropsychological variables derived from 
a larger test battery and often utilize cut scores, making more fine-grained analysis less 
feasible. Methods that would enable one to consider the interrelationships between 
different cognitive processes and integrate biomarker data would be most consistent 
with clinical practice and in theory, have the potential to identify new subtypes. Further, 
the inclusion of additional neuropsychological measures typically enables more sensitive 
detection of cognitive subtypes (e.g., Machulda et al., 2019), methods that can detect 
subtle variation in less comprehensive datasets would be useful.

Computational approaches, including “community structure”, have shown promise as 
a method for identifying subtypes within heterogenous datasets by finding relationships 
between interacting components of a larger system, such as neuropsychological mea-
sures and biomarkers. Briefly, networks are said to have community structure when 
subsets of nodes (i.e., communities) within that network are more densely connected to 
other nodes within that particular community relative to other nodes in the network but 
outside of the community (Fair et al., 2012; Feczko & Fair, 2020; Feczko et al., 2018, 2019). 
In contrast to traditional clustering approaches, community detection does not require 
a priori number of clusters to be entered into the model, it allows for the possibility for 
identifying no clusters (e.g., a unitary dataset), and can more readily detect presence of 
smaller sized clusters. Within neurodegenerative research, network-based analyses have 
been applied to biomarker data (e.g., data-driven phenotypes based on cortical atrophy 
(Guo et al., 2020)) with cognitive data examined after or used in conjunction with select 
cognitive screener measures (Nezhadmoghadam et al., 2021) (e.g., machine learning 
methods). However, to our knowledge, this approach has not yet been applied as 
a means of identifying cognitive subtypes within MCI. Therefore, the purpose of the 
current study is to assess for cognitive subtypes within the MCI cohort from Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) Study using community detection. Specifically, we 
hypothesize this approach will result in detection of several distinct communities in the 
MCI sample.

As mentioned, the definition of MCI varies across studies. As the primary aims of ADNI 
focused on Alzheimer’s Disease, the selection criteria for “Mild Cognitive Impairment” 
were based on the presence of memory changes (presence of a subjective memory 
concern and an objective memory problem based on education-corrected score on 
delayed story memory recall). Individuals characterized as MCI in this study demonstrated 
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broadly intact general cognitive functions and activities of daily living based on study 
clinician judgment and individuals were expected to score a 0.5 on the Clinical Dementia 
Rating (CDR) (with at least a 0.5 on memory box).

Methods

Study sample

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 
2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. 
The primary goal of ADNI has been to test whether serial magnetic resonance imaging 
(MRI), positron emission tomography (PET), other biological markers, and clinical and 
neuropsychological assessment can be combined to measure the progression of mild 
cognitive impairment (MCI) and early Alzheimer’s disease (AD).

Data included in the present analyses are from the first wave of the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) study having 822 participants, ages 55–90 years of age, 
across 27 sites. Readers are referred to http://www.adni-info.org/Scientists/ADNIGrant/ 
ProtocolSummary.aspx for information regarding ADNI study eligibility criteria and diag-
nostic procedures.

Group membership was determined at the screening visit. Present analyses were 
restricted to individuals enrolled into the MCI or HC groups during the first wave of 
ADNI. Enrollment criteria at screening visit for the larger ADNI study are as follows: 
participants were between ages 55–90 years old, consented to undergo all study proce-
dures, had a study partner able to provide collateral information regarding daily function-
ing, spoke English or Spanish, and were not depressed.

More specifically, individuals within the HC group were required to have a Clinical 
Dementia Rating Scale (CDR) total score of 0, to be cognitively intact (no subjective 
memory complaints, normal performance on WMS-I Story Memory), and to have Mini- 
Mental State Exam (MMSE) score between 24 and 30. Individuals within the MCI group 
met the following criteria at the screening visit: 1) presence of a subjective memory 
complaint (based on self or informant report), 2) evidence of objective memory loss based 
on WMS-I Story Memory (education adjusted cutoff scores are as follows: less than or 
equal to 2/25 points for 0 to 7 years of education; less than or equal to 4/25 points for 8 to 
15 years of education; less than or equal to 8/25 for 16 or more years of education at 
screening visit, 3) Clinical Dementia Rating of 0.5 (memory box score must be at least 
0.5), 4) MMSE score between 24 and 30, and 5) based on study physician’s judgment, 
general cognitive abilities and independent living skills were intact (meaning that “phy-
sician could not diagnose Alzheimer’s disease”). All participants then underwent baseline 
neuropsychological testing (within 28 days of screening visit). Of note, the study protocol 
allowed for changes in group membership based on study clinician judgment at baseline 
neuropsychological visit as well. None of the participants in our analyses demonstrated 
impaired functional living skills (based on the FAQ). All participants then underwent 
baseline neuropsychological testing (within 28 days of screening visit). Present analyses 
included participants for whom all baseline visit neuropsychological data was collected 
and available d the first wave, which resulted in 388 individuals with MCI and 226 Our 
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analyses were limited to English-speaking participant. MRI and PET data were available for 
a subset of the sample (baseline neuroimaging visit within 14 days of baseline neuropsy-
chological testing visit, follow up visits scheduled up to 72 months later).

Measures

Neuropsychological Measures: As detailed in the ADNI protocol summary (http://www. 
adni-info.org/Scientists/ADNIGrant/ProtocolSummary.aspx), a battery of neuropsycholo-
gical and cognitive measures was administered to participants at the baseline visit 
(completed within one month of the screening visit). Readers are referred to Park and 
colleagues for analyses of the factor structure of the neuropsychological variables col-
lected for ADNI (Park et al., 2012). Consistent with prior approaches, since WMS Story 
Memory was used to diagnose MCI, it was not included in community detection analyses 
to avoid criterion contamination (Eppig et al., 2017). The reader is referred to Table 1 for 
further information regarding selected measures. Differences in reading using American 
National Adult Reading Test (ANART) (Nelson & O’Connell, 1978), Functional Assessment 
Questionnaire (FAQ), and MMSE scores were later examined in post-hoc analyses.

Please Note: WAIS-R = Weschler Adult Intelligence Scale-Revised.

Data reduction methods

The clinical practice of neuropsychology relies heavily on standardized scores generated using 
normative reference groups. In an effort to parallel clinical methods when possible, linear 
regressions were run within the healthy control group for each neuropsychological variable 
(dependent variable) with age, gender, and education entered as predictors (independent 
variables). The standard error of the estimate of the model and the unstandardized beta 
coefficients for age, gender and education from each regression were then used to generate 
standard scores with age-, gender-, and education-corrections for participants in MCI sample.

Table 1. Neuropsychological Variables.
Domain Test Name Variable

Memory Rey Auditory Verbal 
Learning Test

Immediate recall: sum of 1–5 learning trials
Delayed recall: total number of correct words recalled after 30-minute delay
Recognition discrimination score 
Number of true positives – number of false positives

Language Boston Naming Test Total number of words correctly named spontaneously and with stimulus cue
Animal Fluency Total number of correct animal names within 60 seconds
Vegetable Fluency Total number of correct vegetable names within 60 seconds

Working 
Memory

WAIS-R Digit Span Digit Span Forward: Total number of points for digit span forward trials 
(auditory working memory capacity)

Digit Span Backward: Total number of points for digit span backward trials 
(complex auditory working memory)

Processing 
Speed

Trail Making Test Time in seconds to complete Trails A
WAIS-R Digit Symbol 

Substitution
Total number of correct items completed in X seconds

Executive 
Function

Trail Making Test Time in seconds to complete Trails B (speeded set shifting)
Clock Drawing Accuracy of drawing scored 1-5

Note: WAIS-R = Weschler Adult Intelligence Scale-Revised.
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Community detection methods

The presence of cognitive subtypes within the MCI cohort was examined using the 
map equation (Rosvall et al., 2009). Demographic analyses were examined in SPSS. 
Graph analyses were conducted using Matlab and Infomap (Edler et al., 2014; 
Rosvall et al., 2009). Each element in the matrix represented the similarity, or link, 
between one participant’s neuropsychological profile with another participant’s 
neuropsychological profile. Negative weights were replaced with zeros. This 
resulted in a 388 × 388 matrix. We utilized the map equation, a hierarchical com-
munity detection method available using Infomap (Rosvall et al., 2009,) and was 
employed as part of the analyses conducted in neurodevelopment samples (Feczko 
et al., 2019). Infomap was run using the multi-level algorithm which performs 
recursive multilevel search to find optimal multilevel hierarchical partitioning. For 
present analysesthe number of outer-most loops (N) run set to 100, the number of 
core loops set to 1000, and no limit set for core level (L) or tune iteration (T). One 
can select parameters designed to optimize speed or a more modular solution over 
accuracy. We chose parameters to optimize accuracy over speed (did not select 
preference for fast hierarchical solution or inner parallelization). As participants in 
the ADNI sample were recruited based on presence of memory concern, potentially, 
this MCI sample might be expected to be more homogeneous than a broader 
cohort (e.g., one that enrolled participants with other cognitive concerns beyond 
memory). Thus we selected parameters to favor accuracy over modularity (i.e., did 
not favor more modular solutions). Additional parameters settings included the 
following: (a) nodes without module assignment were not assigned to module 
assignment of neighboring node, (b) flow was distributed from bipartite node to 
primary nodes, (c) self-links were ignored, (d) teleportation probability was 0.15, (e) 
Markov time was set to 1, and (f) multi-layer relax rate probability was 0.15.

The most appropriate thresholding approach in this context has not yet been 
established, therefore, connectivity was examined across a variety of thresholds 
(similar to approaches used by Feczko et al., 2019). More specifically, community 
structure was examined across multiple weight thresholds (links below a given 
weight threshold were ignored) and across multiple proportional thresholds (only 
links at or above given proportion of all links were included) under the reachability 
assumption as was previously employed by Fair and colleagues to confirm findings 
were not dependent on thresholding method.

The neuropsychological profiles of each community were first examined visually to 
determine the presence of any defining cognitive weaknesses relative to the overall HC 
group means (i.e., profiles were characterized descriptively based on how many standard 
deviations they scored below the control group means). Second, neuropsychological 
scores were compared statistically across MCI communities. Communities were then 
characterized by defining feature(s) (i.e., instances when the community’s score on 
a given measure is significantly different than all other communities in pairwise compar-
isons). As mentioned, cognitive weaknesses were defined based upon age-, gender-, and 
education-corrected scores derived based on the HC sample mean, as opposed to a more 
traditionally employed normative sample (e.g., Heaton normative sample).
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ANOVAs, Kruskal-Wallis, and Chi-Square tests were run in the MCI cohorts sepa-
rately to examine the relationships between demographic variables and community 
membership (e.g., age, education, gender, race, ethnicity). Cognitive profiles of each 
community were characterized first using ANOVAs to examine the relationship 
between community membership and the 12 age-, gender-, and education- 
corrected neuropsychological variables. Pair-wise comparisons were examined for 
significant main effects. Select biomarkers were examined between the identified 
communities within the MCI group using several ANOVAS. Cortical volume mea-
surements reflect bilateral volumes. All reported p values were corrected for multi-
ple comparisons using Bonferroni correction.

Results

Demographic characteristics of study sample

The sample was predominantly White, Non-Hispanic, English-speaking adults. There was 
a significant difference in gender between the two diagnostic groups (X2 (1) = 8.127, p =  
0.005) with more males in the MCI sample. There were no significant differences in 
ethnicity (X2 (2) = 2.881, p = 0.237) or race between diagnostic groups (X2 (6)> = 0.746, p  
= 0.993). Findings from one-way ANOVAs suggested trend level differences in age [F 
(1,612) = 3.837, MSE = 169.179, p = .051, η2 = .006] with the healthy control sample 
approximately one year older than the MCI sample, and no differences in years of 
education by diagnosis F(1,612) = 2.179, MSE = 18.603, p = .140, η2 = .004]. See Table 2 
for more information.

Please Note: HC=Healthy Control; MCI=Mild Cognitive Impairment; N=Sample size; 
SD=Standard Deviation.

Table 2. Demographics.
Demographic Variable HC MCI Total Sample Significance

Age, years 
Mean (SD)

75.85 (5.05) 74.76 (7.41) 75.16 (6.66) .051

Education, years 
Mean (SD)

16.06 (2.86) 15.70 (2.96) 15.83 (2.93) .140

Gender 
Males, Females

118, 108 248, 140 366, 248 .005

Ethnicity (N) 
Hispanic/Latino 
Not Hispanic/Latino 
Unknown

2 
223 

1

11 
374 

3

13 
597 

4

.237

Race (N) 
American Indian 
Asian 
Black 
White

0 
3 

16 
207

1 
8 

15 
364

1 
11 
31 

571

.260

Note: HC=Healthy Control; MCI=Mild Cognitive Impairment; N=Sample size; SD=Standard Deviation.
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Descriptive statistics between MCI and HC groups

As expected, the MCI cohort performed significantly more poorly than the HC cohort 
across cognitive measures. The multivariate result was significant for diagnosis, Pillai’s 
Trace =.681, F = 91.409, df = (14, 599), p <= .001, and post-hoc univariate analyses revealed 
the MCI group performed significantly worse on all neuropsychological measures exam-
ined (see Tables 3 and 4 for additional detail).

Please Note: Numbers across the top row correspond to MCI community number. 
Values within each cell correspond to the mean difference between MCI communities per 
neuropsychological variable. Significant pairwise comparisons are bolded. Bonferroni- 
corrected p-values are in parentheses.

Community detection

Within the MCI group, communities were examined across multiple thresholds to mini-
mize influence of thresholding. The results presented reflect the five communities that 
were identified most consistently across different thresholds and within the reachability 
limit. More specifically, results revealed the presence of five communities consistent with 
reachability (no node was isolated) across multiple weighted thresholds (0.30 to 0.55, in 
increments of 0.05) and proportional thresholds (10% to 35%; increments of 5). The 
reported results for the communities are based on use of a weighted threshold of 0.4.

Five communities were identified. Univariate analyses revealed a significant effect of 
community membership for each of the neuropsychological measures. The cognitive 
profile of each MCI community was then characterized in two ways: 1) based on standar-
dized cognitive weaknesses identified relative to the healthy control group (i.e., profiles 

Table 3. Normative Weaknesses by MCI Community.

Neuropsychological  
Test Variable 

1 2 3 4 5 Total 

(N = 240) (N=29) (N=22) (N=30) (N=67) 

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Immediate Recall -1.60 (-0.85) -0.79 (-1.14) 0.09 (-1.29) -1.31 (-1.03) -1.37 (-1.05) -1.38 (-1.04) 
Delayed Recall -1.58 (-0.67) -0.50 (-0.93) 0.56 (-0.93) -1.00 (-0.85) -1.11 (-0.94) -1.25 (-0.94) 
Recognition -1.98 (-1.46) -0.02 (-0.94) 0.65 (-0.56) -0.80 (-1.46) -1.20 (-1.28) -1.46 (-1.57) 
Naming -0.58 (-1.11) -3.51 (-2.54) 0.39 (-0.57) -1.55 (-1.55) -1.64 (-1.84) -1.01 (-1.67) 
Animals -0.63 (-0.92) -1.46 (-0.71) -0.24 (-0.85) -0.86 (-0.76) -0.94 (-0.93) -0.74 (-0.93) 
Vegetables -1.00 (-0.93) -1.54 (-0.94) -0.10 (-1.21) -0.86 (-0.98) -1.20 (-1.00) -1.01 (-1.00) 
Digit Span Forward -0.15 (-1.07) -0.45 (-1.34) -0.97 (-0.84) -0.32 (-1.03) -0.36 (-1.07) -0.27 (-1.09) 

Digit Span Backward -0.31 (-0.10) -0.50 (-0.86) -1.02 (-0.66) -0.56 (-0.78) -0.66 (-0.92) -0.45 (-0.96) 

Digit Symbol  -0.63 (-1.08) -0.94 (-1.17) -0.70 (-1.06) -1.13 (-1.10) -1.92 (-1.22) -0.92 (-1.21) 
Trails A -0.11 (-0.91) -0.39 (-1.06) -0.24 (-0.83) -0.83 (-1.31) -2.62 (-2.68) -0.62 (-1.69) 
Trails B -0.36 (-1.06) -0.25 (-1.11) -0.33 (-0.82) -1.50 (-1.52) -3.68 (-1.76) -1.01 (-1.76) 
Clock -0.44 (-1.27) -0.60 (-1.23) -0.26 (-0.79) -3.81 (-1.71) -0.99 (-1.83) -0.79 (-1.66) 

Legend -4.00 -3.75 -3.50 -3.25 -3.00 -2.75 -2.50 -2.25 -2.00 -1.75 -1.50 -1.25 -1.00 

Please note: Numbers across the top row correspond to MCI community number with sample size of each community in 
parentheses. Values within each cell correspond to the mean standard score per neuropsychological variable with 
standard deviation provided in parentheses. Values are rounded for display purposes. Significant pairwise comparisons 
are bolded. Cells with scores greater than standard deviation below the control group mean are shaded using 
heatmap with intensity of shade and equivalent value provided in the legend.
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examined for scores that were greater than one standard deviation below the control 
group means), and 2) based on statistically significant differences in scores relative to 
other MCI communities. Based on the pattern of neuropsychological findings, these 
communities will subsequently be referred to by their most appropriate neuropsycholo-
gical identification: Please see Figures 1 and 2 for visual representation of each MCI 
community’s profiles.

The first community (Community 1) was characterized by mean memory scores 
(Immediate Recall, Delayed Recall, and Recognition Index from AVLT) that were more 
than one standard deviation below the HC group means. Relative to other communities, 
Community 1 was characterized by significantly lower AVLT Delayed Recall and 
Recognition Index scores (Delayed Recall: p < .000for Community 2, 3, and 5; p = .001for 
Community 4; Recognition Index p < .000for all Communities). This first community will be 
subsequently referred to as “predominantly memory impairment.”

The second community (Community 2) was characterized by a mean Boston Naming 
Test (BNT) Total score that was more than 3 standard deviations below the HC group’s 
mean, as well as, by mean Vegetable Fluency and Animal Fluency scores that were more 
than 1 standard deviation below the HC group mean. Relative to other communities, 
Community 2 was characterized by significantly lower BNT Total score (p < .000 for all 
communities). This community will subsequently be referred to as the “predominantly 
language impairment.”

The third community (Community 3) was characterized by a Digit Span Backwards 
score that was more than one standard deviation below the HC group’s mean. Relative to 
other communities, Community 3 profile was characterized by significantly higher BNT 

Figure 1. The neuropsychological profiles for the five communities. Colour bars are grouped by 
cognitive domain (memory is green, language is blue, working memory is red, processing speed is 
yellow, and executive function is purple). Each community’s cognitive profile for each cognitive 
measure is represented along the X axis.
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Total score and AVLT Delayed Recall scores (BNT Total: p = .024for Community 1; p  
< .000for Community 2, 4, and 5; AVLT Delayed Recall: p < .000for all communities). This 
community will subsequently be referred to as the “cognitively normal,” though it is 
recognized that this community was enrolled in the MCI group and thus would have 
scored in the impaired range on a memory measure at the screening visit.

The fourth community (Community 4) was characterized by a mean Clock Drawing 
score that was more than three standard deviations below the HC group mean. 
Additionally, relative to HC mean: BNT Total and Trails B scores were greater than 1.5 
SD below, and Digit Symbol Modalities, AVLT Immediate Recall and AVLT Delayed Recall 
were greater than one standard deviation below the HC group means. Relative to other 
communities, Community 4 was characterized by significantly lower Clock scores (p < .000 
for all communities). This community will subsequently be referred to as “multidomain, 
with notable executive dysfunction.”

The fifth community (Community 5) was characterized by a mean Trails B score that 
was greater than three standard deviations below the HC group mean and a Trails A score 
that was more than two standard deviations below the HC group mean. Additionally, 
compared to the HC means: Digit Symbol Modality and Confrontation naming scores 
were greater than 1.5 SD below the mean, and AVLT Immediate Recall, AVLT Delayed 

Executive Function
Clock

Trails B

Immediate Recall
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Memory
Delayed Recall

Recognition

Trails A Naming

Processing Speed

Digit Symbol Animals

Digit Span Backward Vegetables Language

Digit Span Forward

Working Memory

Community 1

Community 2

Community 3

Community 4

Community 5

Figure 2. The radar graph displays the neuropsychological profiles for five communities. Background 
panel colours correspond to cognitive domain (memory is green, language is blue, working memory is 
red, processing speed is yellow, and executive function is aqua). The y-axis represents standardized 
scores on each measure. The community mean for each cognitive measure is represented along the y 
axis as a standardized score based on control group performance. The green line corresponds to MCI 
Community 1 (predominantly memory impairment), the blue line corresponds to MCI Community 2 
(predominantly language impairment), the purple line corresponds to MCI Community 3 (cognitively 
normal), the orange line corresponds to MCI Community 4 (multidomain, with notable executive 
dysfunction), and the red line corresponds to MCI Community 5 (multidomain, with notable proces-
sing speed impairment).
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Recall, AVLT Recognition Index, and Vegetable Fluency were more than one standard 
deviation below the HC group mean. Relative to other communities, Community 5 was 
characterized by significantly lower Trails A, Trails B, and Digit Symbol Modalities scores 
(Trails A and Trails B: p < .000for all communities; Digit Symbol: p = .014for Community 4, 
p = .001for Community 2, p < .000for Communities 1 and 3). This community will subse-
quently be referred to as “multidomain, with notable processing speed impairment.”

Demographic and clinical variables
Community profiles did not differ on age [F(4,378) = .281, p = .890], gender (X2 (4) = 1.907, 
p = 0.753), race (X2 (12) = 18.594, p = 0.099), or ethnicity (X2 (8) = 12.722, p = 0.122). There 
was a significant effect for education (Kruskal-Wallis Test, (X2 (4) = 13.184, p = .01) and 
community membership. Follow-up analyses revealed Community 5 (multidomain, with 
notable processing speed impairment) had a lower education level compared to 
Community 1 (predominantly memory impairment) (p = .014) and Community 3 (cogni-
tively normal) (p = .009). Community membership was not significantly associated with 
functional living skills measured by the FAQ [F(4,374) = 0.526, p = .717], Clinical Dementia 
Rating Scale score [F(4,377) = 1.290, p = .273], or MMSE score [F(4,377) = 1.566, p = .183].

Biomarkers
One-way ANCOVAs controlling for intracranial volume (ICV), age, and gender revealed 
community membership were significantly associated with hippocampal (F(4,299) =  
5.081, p = .001), entorhinal (F(4,299) = 5.655, p < .000) and fusiform gyrus (F(4,299) =  
2.850, p = .024) volumes. Pairwise comparisons revealed smaller hippocampal and entorh-
inal volumes in Community 1 (predominantly memory impairment) compared to 
Community 3 (cognitively normal) (p = .005, p = .002) and Community 2 (predominantly 
language impairment) (p = .018, p = .018). In addition, smaller fusiform gyrus volume was 
seen in Community 5 (multidomain impairment with notable processing speed impair-
ment) compared to Community 1 (predominantly memory impairment) (p = .019). FDG- 
PET levels in the posterior cingulate, angular gyrus, inferior/middle temporal gyrus were 
associated with community membership (F(4,190) = 3.775, p = .006). Pairwise compari-
sons revealed lower FDG-PET levels (i.e., greater hypometabolism) in angular gyrus, 
temporal, and posterior cingulate in Community 5 (multidomain, with notable processing 
speed impairment) compared to Community 2 (predominantly language impairment) (p  
= .006) as well as a trend toward significance relative to Community 1 (predominantly 
memory impairment) (p = .061). Community membership was not significantly related to 
other biomarkers examined (tau: F(4,168) = 1.659, p = .162; ABETA: F(4,154) = 1.108, p  
= .355; APOE4 Status: X2 (8) = 5.605, p = 0.691).

Conversion at follow up
Stable MCI diagnosis (relative to baseline) versus conversion to dementia was significantly 
associated with community membership at 18-, 24-, and 36-month follow- up visits (X2 (4)  
= 17.944, p = 0.001; X2 (4) = 16.194, p = 0.003; X2 (4) = 11.087, p = 0.026;), but not at 
6-month, 12-month or 48-months (X2 (4) = 3.20, p = 0.525; X2 (4) = 8.445, p = 0.077; X2 (4)  
= 5.180, p = 0.269). Additionally, amongst individuals that subsequently converted to 
dementia, months from baseline visit to first diagnosis of dementia visit was significantly 
associated with community membership (F(4,165) = 3.009, p = .020). Pair-wise 
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comparisons revealed months to initial dementia diagnosis were significantly greater for 
Community 3 (cognitively normal, mean conversion rate: 33.6 months) relative to 
Communities 1 (predominantly memory impairment, mean conversion rate: 20.1 months), 
5 (multidomain, with notable processing speed impairment, mean conversion rate: 17.3  
months), and 2 (predominantly language impairment, mean conversion rate: 15.6  
months) (p = .042, p = .012, p = .044), but not community 4 (multidomain, with notable 
executive dysfunction, mean conversion rate: 20.5 months) (p = .106).

Discussion

This is the first study to examine cognitive subtypes in MCI using a community detection 
approach, to the best of our knowledge. Five distinct cognitive MCI subtypes were 
identified, each characterized first by the pattern of weaknesses relative to the healthy 
control group and second, by examining the unique, defining cognitive features relative 
to the other MCI communities. Community membership was significantly associated with 
multiple biomarkers and progression rates at some, but not all, time points.

The first and largest subtype, predominantly memory impairment, was characterized 
by lower verbal memory scores compared to both the healthy control sample, and 
compared to the other four MCI communities. This profile is consistent with single, 
domain amnestic MCI syndrome frequently identified as a precursor to Alzheimer’s 
Disease (Jak, Bangen, et al., 2009; Oltra-Cucarella et al., 2018; Petersen, 2004). Given the 
emphasis on recruiting individuals at heightened risk for AD for entry into ADNI, this 
profile is expected. The second subtype identified, predominantly language impairment, 
was characterized by lower language scores (confrontation naming, two category fluency 
measures) compared to both the HC group sample and compared to the other four MCI 
communities. In the context of AD, confrontation naming weaknesses frequently co-occur 
with verbal memory weaknesses, and together, have been hypothesized to reflect more 
broadly, a decline in semantic knowledge associated with AD (Lin et al., 2014). More 
predominant language weaknesses, could also, theoretically reflect alternative neurode-
generative etiologies (e.g., primary progressive aphasia) (Gorno-Tempini et al., 2011; 
Mesulam et al., 2012), though further language measures would be necessary to assess 
this and present analyses did not include information pertaining to differential etiologies. 
The third subtype, cognitively normal, was characterized by relatively “normal” scores 
compared to the HC group (only one score, digit span backwards, was 1 standard 
deviation below the HC group mean). Further, when compared to other four MCI com-
munities, this profile was characterized by relative strengths in language and memory. Of 
note, participants in this community would have been enrolled in the study based on the 
presence of a low story memory score at the screening visit (within 14 days of neuropsy-
chological baseline testing) and based upon presence of a subjective decline in memory. 
Intraindividual cognitive variability is of interest (Casaletto et al., 2019; Costa et al., 2019), 
and potentially, this profile could be a reflection of greater intraindividual variability over 
time. Alternatively, this profile could reflect the earliest stage of AD, the Subjective 
Memory Complaints, stage (Jessen et al., 2020; Petersen et al., 2021) (given enrollment 
in ADNI required presence of memory concerns and poor performance logical memory).

The remaining two communities identified were characterized by more widespread 
weaknesses across cognitive domains when compared to the healthy control group. Both 
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“multidomain” communities demonstrated greater executive dysfunction relative to 
other three MCI subtypes described above, however, it appeared poor performance on 
executive function measures for the fifth subtype might, in part, be driven by slowed 
processing speed (hence the label, multidomain, with notable impairment in processing 
speed), while the fourth subtype, appeared to have more pronounced impairments in 
executive function, in the context of relatively better processing speed. The present 
testing battery was not selected to elucidate visuospatial deficits, however, given the 
notable weakness on Clock, it is possible this profile could reflect a more visually 
mediated AD presentation (Salimi et al., 2018)

Relationship between biomarkers and MCI subtypes

Community membership was associated with some, but not all of the biomarkers exam-
ined. While measures of cortical volume (hippocampus, entorhinal, and fusiform volumes) 
and FDG PET in the posterior cingulate, angular gyrus, inferior/middle temporal gyrus (key 
hubs of the Default Mode Network) were significantly related to community, additional 
biomarkers (tau, amyloid beta, APOE4 carrier status) were not significantly different across 
communities.

The predominantly memory impairment community was the largest, with a cognitive 
profile (single domain, amnestic) and cortical atrophy (smaller hippocampal and entorh-
inal volumes) most consistent with AD. The multidomain, with pronounced processing 
speed impairment community, was associated with greater hypometabolism in key hubs 
of the Default Mode Network (the posterior cingulate, angular gyrus, inferior/middle 
temporal gyrus) and additionally, had smaller fusiform volumes relative to some compar-
ison profiles. This profile might reflect mixed pathology or more advanced aMCI. Fusiform 
connectivity has been linked to greater risk for progression to AD in individuals with MCI, 
potentially, our findings could link to that. Notably, the communities did not differ on 
clinical measures of severity, however, suggesting communities were not simply 
a reflection of greater functional impairment. Further, conversion to dementia, at 2- and 
3 year- follow up visits was significantly associated with community membership (with 
strongest converters in the predominantly memory impairment community and the two 
multidomain communities, though due to limited sample sizes future studies would be 
needed to confirm this). These findings are consistent with prior research linking greater 
progression to dementia in single domain aMCI (i.e., predominantly memory impairment 
community) and multidomain profiles.

Comparisons to alternative approaches

Prior subtyping approaches rely heavily on a priori determination of impaired scores (i.e., 
cut scores) which influences which subtypes emerge. For instance, depending on criteria 
selected, Bondi et al. (2014) identified either a relatively normal subtype in MCI or 
alternatively, a language subtype (without a normal subtype), both of which had different 
associations with biomarker data. Multiple approaches across datasets reveal an amnestic 
subtype (Bondi et al., 2014; Machulda et al., 2019) and dysexecutive/mixed (Clark et al.,  
2013) or dysexecutive subtype (Machulda et al., 2019). The present approach enabled 
detection of both a language subtype and a relatively normal subtype, along with an 
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amnestic subtype and two separate dysexecutive subtypes all within a single sample that 
was initially labeled generally MCI. This approach was successful in detecting these 
subtypes without use of separate normative data, as the scores were standardized 
based on the control sample without the use of a priori cut off scores. The strongest 
associations with biomarker data emerged with FDG-PET levels, suggesting this may be 
a particularly sensitive biomarker associated with cognitive decline in MCI. These findings 
suggest that this data driven approach may be useful in differentiating subtypes of MCI 
which may have subsequent implications for etiologic and treatment determinations. 
Additional follow-up studies and etiologic classification data are needed to further 
examine the specific findings reported here.

Study limitations

Study limitations include smaller healthy control sample size relative to MCI sample size. 
This likely impacted post-hoc analyses for smaller sized communities (as relatively less 
participants had data for all neuropsychological variables, biomarkers, and follow up 
information). The smaller sample sizes of some of the communities (e.g., communities 
with less than 50 people) in combination with smaller sample sizes for individuals with 
aforementioned biomarkers undoubtedly impacted post-hoc comparisons. As ADNI was 
developed to examine Alzheimer’s Disease, not all neuropsychological domains were 
equivalently sampled (e.g., no spatial tasks), which impacted the cognitive profiles that 
could be examined. Lastly, diagnostic criteria for MCI has been shown to impact what 
subtypes are detected (Bondi et al., 2014), so this also influenced what profiles would be 
detected. The sample was a predominantly White, Non-Hispanic, English Speaking sample 
(bilingualism/multilingualism was not assessed) which limits the applicability of these 
findings to the general population. Given the extent of health disparities in MCI, it is 
imperative research efforts and financial spending initiatives be directed to rebuilding the 
trust between minoritized communities and the scientific community, and as such, future 
studies are needed to expand findings to individuals from minoritized backgrounds.

Conclusions

A better understanding of MCI heterogeneity can be examined by exploring not only 
cognitive weaknesses relative to a healthy control sample but also by examining within 
MCI variability. Alternative methodologies, such as community detection, have the poten-
tial to detect subtler cognitive variation within MCI that can be readily examined with 
biomarker variables or clinical metrics. This approach has shown significant utility within 
neurodevelopmental populations (Fair et al., 2012; Feczko & Fair, 2020; Feczko et al., 2018) 
and our work supports its extension to MCI as well. Theoretically, with more accurate 
subtyping approaches, it may be possible to characterize the clinical and etiological 
heterogeneity within MCI, in ways that could have meaningful clinical applications. 
More accurate subtyping of MCI has the potential to identify different etiological subtypes 
and could potentially identify help explain the heterogeneity in treatment response, for 
instance (Nettiksimmons et al., 2014). While the present community detection analyses 
were conducted for using neuropsychological data collected at a single time point, future 
analyses might consider using a trajectory-based subtyping approach which has also 
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shown utility in developmental samples (Fair et al., 2012; Feczko & Fair, 2020; Feczko et al.,  
2018). The code used in these analyses has been made available at https://github.com/ 
jpommy/MCI-Subtyping.
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